
generic Documentation

Andrey Popp

Dec 21, 2022

CONTENTS

1 Multidispatching 3
1.1 Multifunctions . 3

1.1.1 Multifunctions of several arguments . 4
1.2 Multimethods . 4

1.2.1 Providing “catch-all” case . 6
1.3 API reference . 6

2 Event system 9
2.1 Basic usage . 9
2.2 Event inheritance . 10
2.3 Using per-application event API . 10
2.4 API reference . 10

3 Registry 11

4 Installation 13

5 Development process 15

Index 17

i

ii

generic Documentation

Generic is trying to provide a Python programmer with primitives for creating reusable software components by em-
ploying advanced techniques of OOP and other programming paradigms.

This documentation suits both needs in a tutorial and an API reference for generic:

CONTENTS 1

generic Documentation

2 CONTENTS

CHAPTER

ONE

MULTIDISPATCHING

Multidispatching allows you to define methods and functions which should behave differently based on arguments’
types without cluttering if-elif-else chains and isinstance calls.

All you need is inside generic.multidispatch module. See examples below to learn how to use it to define multi-
functions and multimethods.

First the basics:

>>> class Cat: pass
>>> class Dog: pass
>>> class Duck: pass

1.1 Multifunctions

Suppose we want to define a function which behaves differently based on arguments’ types. The naive solution is
to inspect argument types with isinstance function calls but generic provides us with @multidispatch decorator
which can easily reduce the amount of boilerplate and provide desired level of extensibility:

>>> from generic.multidispatch import multidispatch

>>> @multidispatch(Dog)
... def sound(o):
... print("Woof!")

>>> @sound.register(Cat)
... def cat_sound(o):
... print("Meow!")

Each separate definition of sound function works for different argument types, we will call each such definition a
multifunction case or simply a case. We can test if our sound multifunction works as expected:

>>> sound(Dog())
Woof!
>>> sound(Cat())
Meow!
>>> sound(Duck())
Traceback (most recent call last):
...

TypeError: No available rule found for ...

3

generic Documentation

The main advantage of using multifunctions over single function with a bunch of isinstance checks is extensibility
– you can add more cases for other types even in separate module:

>>> @sound.register(Duck)
... def duck_sound(o):
... print("Quack!")

When behaviour of multifunction depends on some argument we will say that this multifunction dispatches on this
argument.

1.1.1 Multifunctions of several arguments

You can also define multifunctions of several arguments and even decide on which of first arguments you want to
dispatch. For example the following function will only dispatch on its first argument while requiring both of them:

>>> @multidispatch(Dog)
... def walk(dog, meters):
... print("Dog walks for %d meters" % meters)

But sometimes you want multifunctions to dispatch on more than one argument, then you just have to provide several
arguments to multidispatch decorator and to subsequent when decorators:

>>> @multidispatch(Dog, Cat)
... def chases(dog, cat):
... return True

>>> @chases.register(Dog, Dog)
... def chases_dog_dog(dog1, dog2):
... return None

>>> @chases.register(Cat, Dog)
... def chases_cat_dog(cat, dog):
... return False

You can have any number of arguments to dispatch on but they should be all positional, keyword arguments are allowed
for multifunctions only if they’re not used for dispatch.

1.2 Multimethods

Another functionality provided by generic.multimethod module are multimethods. Multimethods are similar to
multifunctions except they are. . . methods. Technically the main and the only difference between multifunctions and
multimethods is the latter is also dispatch on self argument.

Implementing multimethods is similar to implementing multifunctions, you just have to decorate your methods with
multimethod decorator instead of multidispatch. But there’s some issue with how Python’s classes works which
forces us to use also has_multimethods class decorator:

>>> class Vegetable: pass
>>> class Meat: pass

>>> from generic.multimethod import multimethod, has_multimethods

(continues on next page)

4 Chapter 1. Multidispatching

generic Documentation

(continued from previous page)

>>> @has_multimethods
... class Animal(object):
...
... @multimethod(Vegetable)
... def can_eat(self, food):
... return True
...
... @can_eat.register(Meat)
... def can_eat(self, food):
... return False
register rule (<class '__main__.Animal'>, <class '__main__.Vegetable'>)
register rule (<class '__main__.Animal'>, <class '__main__.Meat'>)

This would work like this:

>>> animal = Animal()
>>> animal.can_eat(Vegetable())
True
>>> animal.can_eat(Meat())
False

So far we haven’t seen any differences between multifunctions and multimethods but as it have already been said
there’s one – multimethods use self argument for dispatch. We can see that if we would subclass our Animal class
and override can_eat method definition:

>>> @has_multimethods
... class Predator(Animal):
... @Animal.can_eat.register(Meat)
... def can_eat(self, food):
... return True
register rule (<class '__main__.Predator'>, <class '__main__.Meat'>)

This will override can_eat on Predator instances but only for the case for Meat argument, case for the Vegetable
is not overridden, so class inherits it from Animal:

>>> predator = Predator()
>>> predator.can_eat(Vegetable())
True
>>> predator.can_eat(Meat())
True

The only thing to care is you should not forget to include @has_multimethods decorator on classes which define or
override multimethods.

You can also provide a “catch-all” case for multimethod using otherwise decorator just like in example for multifunc-
tions.

1.2. Multimethods 5

generic Documentation

1.2.1 Providing “catch-all” case

There should be an analog to else statement – a case which is used when no matching case is found, we will call such
case a catch-all case, here is how you can define it using otherwise decorator:

>>> @has_multimethods
... class Animal(object):
...
... @multimethod(Vegetable)
... def can_eat(self, food):
... return True
...
... @can_eat.register(Meat)
... def can_eat(self, food):
... return False
...
... @can_eat.otherwise
... def can_eat(self, food):
... return "?"
register rule (<class '__main__.Animal'>, <class '__main__.Vegetable'>)
register rule (<class '__main__.Animal'>, <class '__main__.Meat'>)
register rule (<class '__main__.Animal'>, <class 'object'>)

>>> Animal().can_eat(1)
'?'

You can try calling sound with whatever argument type you wish, it will never fall with TypeError anymore.

1.3 API reference

generic.multidispatch.multidispatch(*argtypes: Optional[type])→ Callable[[T], FunctionDispatcher[T]]
Declare function as multidispatch.

This decorator takes argtypes argument types and replace decorated function with FunctionDispatcher
object, which is responsible for multiple dispatch feature.

generic.multimethod.multimethod(*argtypes: Optional[type])→ Callable[[T], MethodDispatcher[T]]
Declare method as multimethod.

This decorator works exactly the same as multidispatch() decorator but replaces decorated method with
MethodDispatcher object instead.

Should be used only for decorating methods and enclosing class should have has_multimethods() decorator.

generic.multimethod.has_multimethods(cls: type[C])→ type[C]
Declare class as one that have multimethods.

Should only be used for decorating classes which have methods decorated with multimethod() decorator.

class generic.multidispatch.FunctionDispatcher(argspec: FullArgSpec, params_arity: int)
Multidispatcher for functions.

This object dispatch calls to function by its argument types. Usually it is produced by multidispatch() dec-
orator.

You should not manually create objects of this type.

6 Chapter 1. Multidispatching

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#int

generic Documentation

register(*argtypes: Optional[type])→ Callable[[T], T]
Decorator for registering new case for multidispatch.

New case will be registered for types identified by argtypes. The length of argtypes should be equal to
the length of argtypes argument were passed corresponding multidispatch() call, which also indicated
the number of arguments multidispatch dispatches on.

class generic.multimethod.MethodDispatcher(argspec: FullArgSpec, params_arity: int)
Multiple dispatch for methods.

This object dispatch call to method by its class and arguments types. Usually it is produced by multimethod()
decorator.

You should not manually create objects of this type.

property otherwise: Callable[[T], T]

Decorator which registers “catch-all” case for multimethod.

register(*argtypes: Optional[type])→ Callable[[T], T]
Register new case for multimethod for argtypes

1.3. API reference 7

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/typing.html#typing.Callable

generic Documentation

8 Chapter 1. Multidispatching

CHAPTER

TWO

EVENT SYSTEM

Generic library provides generic.event module which helps you implement event systems in your application. By
event system I mean an API for subscribing for some types of events and to handle those events so previously subscribed
handlers are being executed.

2.1 Basic usage

First you need to describe event types you want to use in your application, generic.event dispatches events to cor-
responding handlers by inspecting events’ types, so it’s natural to model those as classes:

>>> class CommentAdded(object):
... def __init__(self, post_id, comment):
... self.post_id = post_id
... self.comment = comment

Now you want to register handler for your event type:

>>> from generic.event import Manager

>>> manager = Manager()

>>> @manager.subscriber(CommentAdded)
... def print_comment(ev):
... print(f"Got new comment: {ev.comment}")

Then you just call generic.event.handle function with CommentAdded instance as its argument:

>>> manager.handle(CommentAdded(167, "Hello!"))
Got new comment: Hello!

This is how it works.

9

generic Documentation

2.2 Event inheritance

2.3 Using per-application event API

2.4 API reference

class generic.event.Manager

Event manager.

Provides API for subscribing for and firing events.

handle(event: object)→ None
Fire event

All subscribers will be executed with no determined order. If a handler raises an exceptions, an Exception-
Group will be raised containing all raised exceptions.

subscribe(handler: Callable[[object], None], event_type: Type[object])→ None
Subscribe handler to specified event_type

subscriber(event_type: Type[object])→ Callable[[Callable[[object], None]], Callable[[object], None]]
Decorator for subscribing handlers.

Works like this:

>>> mymanager = Manager()
>>> class MyEvent():
... pass
>>> @mymanager.subscriber(MyEvent)
... def mysubscriber(evt):
... # handle event
... return

>>> mymanager.handle(MyEvent())

unsubscribe(handler: Callable[[object], None], event_type: Type[object])→ None
Unsubscribe handler from event_type

10 Chapter 2. Event system

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None

CHAPTER

THREE

REGISTRY

11

generic Documentation

12 Chapter 3. Registry

CHAPTER

FOUR

INSTALLATION

You can get generic by issuing easy_install:

% easy_install generic

or pip command:

% pip install generic

In case you find a bug or have a feature request, please file a ticket at GitHub Issues.

13

https://github.com/gaphor/generic/issues

generic Documentation

14 Chapter 4. Installation

CHAPTER

FIVE

DEVELOPMENT PROCESS

Development takes place at GitHub, you can clone source code repository with the following command:

% git clone git://github.com/gaphor/generic.git

In case submitting patch or GitHub pull request please ensure you have corresponding tests for your bugfix or new
functionality.

15

https://github.com/gaphor/generic

generic Documentation

16 Chapter 5. Development process

INDEX

F
FunctionDispatcher (class in generic.multidispatch), 6

H
handle() (generic.event.Manager method), 10
has_multimethods() (in module generic.multimethod),

6

M
Manager (class in generic.event), 10
MethodDispatcher (class in generic.multimethod), 7
multidispatch() (in module generic.multidispatch), 6
multimethod() (in module generic.multimethod), 6

O
otherwise (generic.multimethod.MethodDispatcher

property), 7

R
register() (generic.multidispatch.FunctionDispatcher

method), 6
register() (generic.multimethod.MethodDispatcher

method), 7

S
subscribe() (generic.event.Manager method), 10
subscriber() (generic.event.Manager method), 10

U
unsubscribe() (generic.event.Manager method), 10

17

	Multidispatching
	Multifunctions
	Multifunctions of several arguments

	Multimethods
	Providing “catch-all” case

	API reference

	Event system
	Basic usage
	Event inheritance
	Using per-application event API
	API reference

	Registry
	Installation
	Development process
	Index

